Feature Report: Understanding Nuclear Energy

4 items of content in this feature report

Exploring
Print

Close-up

From Chemical to Nuclear Reactions, the Great Energy Leap

The term nuclear comes from the Latin word "nucleus", which means core. Nuclear energy is released by the fission of the nucleus of certain heavy atoms. It brings into play far greater forces than those involved in the chemical reactions associated, for example, with the combustion of oil or gas. But because of its power, this energy must be mastered and controlled by complex techniques.

Breaking apart the nucleus of a uranium atom (a process known as fission) unleashes an enormous amount of energy in the form of heat. Nuclear reactors provoke fission to create steam, which is used to generate electricity. © THINKSTOCK

The entire universe - planets, air, water, rocks, living beings - is composed of atoms. Invisible to the naked eye, atoms are themselves made up of several components.

Each atomThe basic unit of matter and the smallest, indivisible unit of a chemical element... comprises:

  • A nucleus, which is formed of protons and neutrons.
  • Electrons, which revolve around the nucleus at a very high speed1.

Although protons and electrons are far from each other, they are linked by their electrical charge, which is the same value for both, but positive for one (the protonA positively charged particle. Protons and neutrons form the nucleus of an atom. ) and negative for the other (the electronMatter is made up of atoms. An atom comprises a nucleus made of protons (positively charged particles) and neutrons (neutral charge)...). Protons and electrons are equal in number, which makes the atom electrically neutral. Neutrons are neutral particles, but they play an important role in holding the nucleus together and contribute greatly to its mass.

Chemical reactions result from combining different atoms and are achieved by redistributing their electrons, which involves an entire system of forces, and therefore energy. When wood, coalCoal is ranked by its degree of transformation or maturity, increasing in carbon content from... or gas are burned, chemical energy is released.

Nuclear reactions take place at the level of the nucleus, which is very tightly held together. The bonds that unite the nucleus's particles are considerably stronger than those keeping electrons on their orbit. Breaking apart the nuclei of a gram of uraniumGray, very dense radioactive metal that is relatively abundant in the Earth's crust and oceans in the form of UO2... releases one million times more energy than burning one gram of fossil fuelFuel is any solid, liquid or gaseous substance or material that can be combined with an oxidant... in a chemical reaction.

The number of protons - which is identical to the number of electrons - gives the atom its chemical properties. The lightest of the elements is hydrogenThe simplest and lightest atom, the most abundant element in the universe. (one proton). The heaviest natural element in the Earth's crust is uranium (92 protons). Two atoms having the same number of protons, but a different number of neutrons, are known as isotopes. Their chemical properties are identical, but their physical properties, particularly nuclear, are different.

The lightest chemical element is hydrogen; the heaviest that exists naturally is uranium.

Nuclear fusion and fission

Nuclear energyEnergy produced in nuclear power plants. The enormous amount of heat released during fission of uranium atom nuclei is transferred to water... was identified in the 1930s, along with its two great reactions, fusion and fission.

Nuclear fusionReaction in which two atoms join to form one heavier atom, releasing energy... occurs when two light nuclei of hydrogen fuse to form helium, a two-proton element. This is the reaction that keeps our sun shining. Humans have achieved nuclear fusion with hydrogen bombs and are attempting to recreate it in a controlled fashion through the International Thermonuclear Experimental Reactor (ITER)An international project to design and build the first experimental fusion reactor that produces more energy than it uses... project (See Feature Report: "Nuclear Fusion").

Nuclear fissionReaction that occurs when an unstable nucleus of a heavy atom splits into lighter nuclei... provides the basis for civilian nuclear powerIn physics, power is the amount of energy supplied by a system per unit time. In simpler terms, power can be viewed as energy output... as it exists today. This involves breaking up large nuclei. An atom is called "fissile" when the nucleus can be broken into two pieces under the impact of a neutronType of particle, along with the proton, that makes up the nucleus of an atom. Neutrons have no net electric charge.. This frees other neutrons, which in turn trigger new fissions, freeing other neutrons, thus setting off a chain reaction2. With this reaction comes a major release of energy and an increase in the material's temperature. Nuclear reactors are designed to control this chain reaction and recover the energy in the form of heatIn the field of statistical thermodynamics today, heat refers to the transfer of the thermal agitation of the particles making up matter... in order to convert it into electricityForm of energy resulting from the movement of charged particles (electrons) through a conductor... (See Close-up: "Inside a Conventional Nuclear Reactor").

Fission is only possible with a small number of large nuclei. The list begins with thorium-232 (90 protons and 142 neutrons, and therefore 232 particles), but which has a low probability of fissioning when capturing a neutron. In nature, uranium-235 (92 protons, 143 neutrons) is the most efficient isotopeA variant of a chemical element that has the same number of protons in the nucleus, but different numbers of neutrons.... A process has therefore been devised to separate and concentrate the uranium-235 in natural uranium to obtain “enriched” fuel.

235: the number of particles in the nucleus of the most frequently used uranium isotope in civilian nuclear energy

Uranium-238 (92 protons, 146 neutrons), which is very abundant in ore, is less efficient but can be converted in a nuclear reactorLocated in the core of a nuclear power plant, the reactor is a type of huge boiler. It has four main components... into plutonium-239, which is fissile (like all odd isotopes) (See Close-up: "The Nuclear Fuel Cycle").

Radioactivity

When a nucleus’s balance is modified, either by man or by nature, there is an emission of electromagnetic particles or radiation, commonly called "rays", which are classified into several categories (alpha, beta or gamma). This is what is known as radioactivity. When properly controlled, radiation can have therapeutic effects, but, in high doses, it is dangerous for organic matter, particularly human tissue (See Close-up "Radioactivity, a Natural or Man-Made Phenomenon").

 

Sources

(1) laradioactivite.com 

(2) CEA